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Freud [2] has obtained the following theorems by using a well-known
result of Newman [4].

THEOREM 1.  There is a rational function r,*(x) = P(x)/Q.(x) of degree
at most n, for which for all n > 5,
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THEOREM 2. For every rational function r,(x) of degree at most n, we
have for all n = 5,
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Theorems 3 and 4 of this note are results on the approximation of
| x|/1 + x®™ by reciprocals of polynomials of degree <n on (—oc0, +00),
m being a positive integer. Theorems 5 and 6 show that the exact order of
approximability of x/1 4+ x?” on [0, o0) by reciprocals of polynomials of
degree <rn Cn/m™-2 Finally we show that (! + x)/(1 + x?} can be ap-
proximated by reciprocals of polynomials of degree <n on [0, ) to the
order of Cy(log m)n—" but not better than CgnS.

We use throughout our work C, C;, C,, C;,..., to denote positive
constants and 7,(x) to denote the nth Chebyshev polynomial of the firstkind.
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LEMMAS

LEMMA 1. There is a polynomial P,*(x) of degree <n for which
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Remark. This result improves a recent result of Lungu [3].

Proof. Let n be odd and
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C is chosen so that P*(1) = 1.
Clearly P(x) is an even polynomial of degree 2n — 2. By evenness we
consider only x € [0, 1]. Write

LTV
I Y= XL. ( t ) di
P(x) T TN,
dt
) =)
Now if we write = sin 8, then T,(¢t) = (—1)**~¥72 sin nf and so we have
the upper bounds, | T,(t)/t| <mn, | T, (t)/t] < 1/t, and a lower bound,

| TW(t)/t | = 2/m n, throughout 0 < 7 < sin/2x.
For 0 < x < sinw/2n, [ (T,(6)/t)? dt = dn>x/n?;

0 < [ (0 (B0

@ 0
1/n
[ n2 dt + if— = 2n.
Jo . 12

Therefore, for 0 << x < sin #/2n,

. @nx) w* _ a*
* P(x) ‘ S oAnx T 2n° M
Forsinm/2n <x <1,
x Tn(t) 2 sin(a /2n) Tn(f) 2 41 )
fo ( p ) dt = L (——t—) dt = sm(v-r/2n) dn/m?,
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and hence,

T
}A P(x)

The lemma follows easily from (1) and (2).

LemMmA 2. [1, Lemma 5]. There exists a sequence (P (xin_y of poly-
nomials of degi ee <n for which

1
S, < -2 kY
[\\ X < O, (3

P{x}) !‘Lm[o,ﬂ
Proof. Choose n even and set

(cos w/2n — cos m/n)
X -F cos w/2n — cos 7/n

Q n (X) =

T{x — cos win).

This is a polynomial since T,(-—cos#/2n) = 0. Since Q(0) = 1, P, (x} =
(I — @.(x)/x is a polynomial. Set & = cos#/2n — cos #/n: then on [0, 1}

A 1 8 — (6 +x) Q) < 1+ (——I\’ T {x — cos w/n}
5M'K—P(\'): I — O(x) =0 )"
S = I + T,,(\ — Cos min)
T+t “)
:M':5m, where TE[_-I.I_{, SE[O., Ij.

Now it is easy to check that 0 <C M <C 26, Hence 0 < § = x — 1/P,(x) < 23,
ie.,

)
o

[

X ————| <o << .
E 2,00 <8<
Hence, the lemma is proved.

Lemma 3. [6, p. 68]. Let P(x) be any polynomial of degree at most n
satisfving | P(x)] < M on [a, b]. Then at any point outside lo, b}, we have

P < | 7, (Zma

T,

NEw THEOREMS

THEOREM 3. There is a polynomial P,*(x) of degree <n for which for
ail large n {n > 2m, where m is any fixed positive integer),

(’ \_\'3‘ ’ CD
’ [+ x n*(r JL f—=.,7) \” - 71”“ Tl
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Proof. By Lemma 1, we have for 0 << x <{ (n — 2m)'/®", and an ap-
propriate polynomial P,_,,, of degree <\n — 2m,

Cuo

151 | < =

Therefore, for 0 < | x | < (n — 2m)'/2,

Ixl 1 '
1 "i— X (1 -+ x2m) P'n42m(x)
1 C
< . 10
~= l \ X l Pn__gm(x) l < (n - 2’11)1A1/2m . (6)
On the other hand, for | x| > (n — 2m)!/2m,
x| 1
1 + me (1 + x2m) Pn—2m(x)
2|x| Cy Cu
== 1 + x2m < \ x i2m—1 (Il _ 2"1)1—1/2m H (7)

since from the construction of the polynomial P(x) in Lemma 1, we have
forall | x| > 1,

1 -
Pl <ix
Now (5) follows from (6) and (7).

THEOREM 4. For e very polynomial P,(x) of degree <n,

JELTTEN g .
T4 x™  Pu(x) i fo,)  20mi-t/2m”
Remark. By changing x/2 to x in (8), we get
[ x| 1y Cis
H 1+ x2m P,n(xz) !}Lw[_w’w) = pl—1/2m (9)
Proof. Let us assume on the contrary
x1/2 1 1
” T4+xm  P(x) ‘Lw[o,w) 0m—1/2m (10
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From (10) we obtain for o, = (12211 < x < 0t

i y1/2 1 L 2m
-

(=1

1.2m
o) 11

= —_— 5 - > —
Pix)y 7 1 = xm  20nt-Lem T 4y 20p1-12w

ie.,
Max

1'2im

! P,I(X)l < Spt—1 2w

an<s<n
Hence by applying Lemma 3 to (12) we get
| P0)] < 14m1-1/2m,
On the other hand we get by (10),

BRI
L P(0) i 20mi—12m >

which is inconsistent with (13).

THEOREM 5.

I X 1 - i

\ 1+ x  P,x) W f0.%) = (32120

Proof. Suppose

i RY 1 l\ - 1
‘ [ x2m Pn(_\—) Lr lo.) (32p- 12y

From (16) we obtain, for 5, = (n*1/")~1 L x < nti,
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For every polynomial P,(x) of degree <r and for all n > 2,

(13

210

~ > - — . = — —
P,,(X) -1 —+- x2m (32]’11_1-"2"2)2 (2,11—1,2;n)2 (32”1-1‘21’”)2

hence,
(32]‘[1*1!2771\2
Max | P @21y
anrgni/m\ X)) < 570

By applying Lemma 3 to {17) we get

| PL(0)] < 512(n1-12mp,

- (32111‘1 r’:’un)z :
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On the other hand, we have from (16),
| Po(0)] > (32n1-2/2m)2, (19)

contradicting (18).

THEOREM 6. There is a polynomial Q,*(x) of degree at most n for which,
Jor all large n (n > 2m, m is any fixed positive integer),

A 1
1+ X7 0,%x)

< Cyaln — 2m)r/m=2, (20)

Lyl0,)
Proof. By Lemma 2, we have for 0 < x << (n — 2m)¥/® =6,

X — O
{ ’ Pn—277z(x/8n)

Cpy(n — 2mtim
(n —2m)3?* ' @h

From the construction of the polynomial P,(x) in Lemma 2, we have
0 < 1/Pu(x) < 2x forall x>=1,n>4. (22)

For 0 << x <8, , with 0,(x) = §,*Po_s,.(x/5,),

} ’ Cis(n — 2myvm
1 + o (1 - \zln) () (n — 2m)>

(23)

On the other hand, for x > (n — 2m)*/», we get for all large n, by (22),

( X - I . < 3x < 1
I+ xme (1 + x*) Qu(x) 1+ x%m = Cyex?m—1
<< Cyy(n — 2m)=2H1m, (24)

The required result (20) follows from (23) and (24).

THEOREM 7. For every polynomial P,(x) of degree n = 2,

1+ x 1 )
o 90,6 2
" 1 + YZ n(\) L [O o« ) ]20}16 ' ("'D)
Proof. Suppose
I+ x 1 1
" T+ 32 PO 0. = 1201 - (26)
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From (26} we get, for 0 <C x < %,

1’ 2:_{‘;~__1__>,%___“‘;#__1_‘;>___]._‘> I
Py 71 +x2 0 120k T+x2 12005 7 201 L x) 7 200 +0?
(27)
Therefore, for 0 < x < 2,
| Pu()] < 2(1 + #%. {28}

Set O, «x) =00 + x) P,(x) — (1 + x?). Then from (26} and (28), for
0 < x =l n?

g o L= xPyxy 1 .
\l Qrwl(x)‘ S5 W ! < 43 (2%}

Now by applying Lemma 3 to (29), we get
2=10,,(—D <2 (303

THEOREM 8. There is a polynomial P,*(x) of degree at most n for which

[Lx [ S _ Gglogn a0
‘ l _1ﬁ xz Pn*(x) }}Lm[o,x) S ‘T? . ATt
Proof. Set Pi(x) = 1 + x?, and for n odd:
P, (¥)= T, 9xlogn ™
. n /
) Pi(x) + CPs ,(x)
K1) — 1 2,niM
Plt (-X) 1 ,_‘L Y 2
C is such that P(x) i5 a polynomial:
9logn 17t
C = P(—1) [T,, (=L 1}] <
Then on [0, 2r (9 log )™},
lLiX—M 1 ‘:ll+x~ I +x ;
T ¥  PAO T+ 2 P + CPyn(0) )
1 1
— 1y — e A
R e e e e o A

(4w CP() !

o 2Cn < 2ot
5 T+ P, x| ;

A
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On the other hand, for x > 2n/(9 log n),

I+x 1 - {1+ x) CP, (x) “
14+x2 P (1+ 30 1 (1 + x2) + CPyu(x) 33
I+ x 2 logn
<1~)—:<2<._‘6<C19 n

The required result (31) follows from (32) and (33).

Note Added in Proof. By replacing (log m)n by [(log n)/n])*> and n~° by #»~® in the proof
of Theorem 8, one can replace (log n)/n in (31) by [(log n)/n]2.
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